• Users Online: 59593
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
RESEARCH ARTICLE
Year : 2021  |  Volume : 58  |  Issue : 2  |  Page : 126-134

A structure-based virtual screening and molecular docking by using potent inhibitors against nucleoprotein of Crimean-Congo hemorrhagic fever virus


1 Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
2 Department of Molecular Biology and Biotechnology, University of Sheffield, UK
3 Faculty Allied Health Sciences, Iqra National University Swat, KP-, Pakistan

Correspondence Address:
Tayyab Ur Rehman
Faculty Allied Health Sciences, Iqra National University Swat, KP
Pakistan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-9062.321757

Rights and Permissions

Background & objectives: Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a vector borne pathogen, well-known for causing endemic hemorrhagic fever in Asia, Europe and Africa. There is no specific drug or vaccine available against CCHFV. The recent upsurge of Crimean-Congo Hemorrhagic Fever around the globe has made it a major health issue and this demands investigation for specific inhibitors to viral proteins. The objective of this study was to assess inhibitors that may have the potential to dock CCHFV nucleoprotein which plays an important role in viral assembly. Methods: We performed structure-based virtual screening and molecular docking by using potent inhibitors against nucleoprotein of CCHFV. Screening was performed by a webserver, MtiOpenScreen which gave 1000 drug-like molecules from PubChem. PyRx Autodock vina was utilized to dock the protein. The docking poses were observed for interaction analysis by LigPlot+. This study provided ten potential candidates capable of binding to the active site of NP of CCHFV. The selected hits were then subjected to toxicity prediction by ProTox-II. Results: Four hits were identified that specifically dock nucleoprotein at the presumed binding site. Furthermore, these compounds have less binding energy i.e., 9.7 kcal/mol, 9.8 kcal/mol and 10.4 kcal/mol and with equal toxicity measures when compared to an FDA approved drug. Interpretation & conclusion: This study illustrates that virtual screening is an efficient in silico approach to identify target-specific inhibitors. Researchers in this area who investigate drugs or synthesize agents against CCHFV with better efficacy could utilize reported inhibitors rather than trying random compounds ambivalently.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1650    
    Printed36    
    Emailed0    
    PDF Downloaded176    
    Comments [Add]    

Recommend this journal